14-3-3gamma affects dynamics and integrity of glial filaments by binding to phosphorylated GFAP.

نویسندگان

  • Huihui Li
  • Yan Guo
  • Junlin Teng
  • Mingxiao Ding
  • Albert Cheung Hoi Yu
  • Jianguo Chen
چکیده

Recent findings indicated a protective role of GFAP in ischemic brain, injured spinal cord, and in neurodegenerative disease. We previously demonstrated that 14-3-3gamma, once thought to be neuronal specific, was up-regulated by ischemia in astrocytes and may play a specific protective role in astrocytes. Here we report that 14-3-3gamma associates with both soluble and filamentous GFAP in a phosphorylation- and cell-cycle-dependent manner in primary cultured astrocytes. The amount of association increases during G2/M phase due to more phosphorylated GFAP. Moreover, this interaction is independent of vimentin, another type III intermediate filament protein in astrocytes which forms glial filaments with GFAP. A series of domain deletion mutants and substitution mutations at phosphorylation sites (from serine to alanine) on GFAP demonstrated that serine 8 in the head domain is essential for the direct association of GFAP to 14-3-3gamma. Overexpression of 14-3-3gamma destroyed the integrity and affected the movement of GFAP intermediate filaments. This data demonstrates that 14-3-3gamma contributes to the regulation of dynamics of GFAP filaments, which may contribute to the stability of the cytoskeleton and the mechanisms of central nervous system neurodegenerative disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice.

Glial fibrillary acidic protein (GFAP), the principal intermediate filament (IF) protein of mature astrocytes in the CNS, plays specific roles in astrocyte functions. GFAP has multiple phosphorylation sites at its N-terminal head domain. To examine the role of phosphorylation at these sites, we generated a series of substitution mutant mice in which phosphorylation sites (Ser/Thr) were replaced...

متن کامل

14-3-3gamma binds to MDMX that is phosphorylated by UV-activated Chk1, resulting in p53 activation.

It has been shown that MDMX inhibits the activity of the tumor suppressor p53 by primarily cooperating with the p53 feedback regulator MDM2. Here, our study shows that this inhibition can be overcome by 14-3-3gamma and Chk1. 14-3-3gamma was identified as an MDMX-associated protein via an immuno-affinity purification-coupled mass spectrometry. Consistently, 14-3-3gamma directly interacted with M...

متن کامل

Phosphorylation sites linked to glial filament disassembly in vitro locate in a non-alpha-helical head domain.

Glial fibrillary acidic protein (GFAP), the intermediate filament component of astroglial cells, can serve as an excellent substrate for both cAMP-dependent protein kinase and protein kinase C, in vitro. GFAP phosphorylated by each protein kinase does not polymerize, and the filaments that do polymerize tend to depolymerize after phosphorylation. Dephosphorylation of phospho-GFAP by phosphatase...

متن کامل

Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons

The glial fibrillary acidic protein (GFAP) is a glial-specific intermediate filament protein, which is expressed in astrocytes in the central nervous system, as well as in astrocytoma cell lines. To investigate the function of GFAP, we have studied the human astrocytoma cell line, U251, which constitutively expresses GFAP and vimentin in the same 10-nm filaments. These cells respond to neurons ...

متن کامل

Association of 14-3-3gamma and phosphorylated bad attenuates injury in ischemic astrocytes.

Our recent findings indicate an induced upregulation of 14-3-3gamma mRNA and protein in ischemic cortical astrocytes. Despite being brain-specific, the functional role of 14-3-3gamma in the brain still remains largely unknown. In this study, we show that among all the 14-3-3 isoforms, only the gamma isoform is inducible under ischemia in astrocytes. Furthermore, this upregulation of 14-3-3gamma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 119 Pt 21  شماره 

صفحات  -

تاریخ انتشار 2006